2025, Volume 2, Issue 9, Page: 01-30.

www.wjims.com

ASSESSING THE BIODIVERSITY AND ECOLOGICAL SIGNIFICANCE OF CHANGA MANGA: ONE OF THE WORLD'S OLDEST HAND-PLANTED FORESTS IN PAKISTAN

Tasawar Iqbal^{1*}, Nadeem Ahmed², Saqlain Mushtaq³, Muhammad Mueen Akhter⁴, Ameer Hamza⁵, Ahmad Raza Javed⁶, Muhammad Talha Taj⁷, Adnan Habib⁸, Umar Farooq Ahmad⁹, Zulqarnain Haider¹⁰

¹Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.

²Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.

³Department of Entomology, University of Agriculture, Faisalabad, Pakistan.

⁴Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.

⁵Department of Horticulture, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan.

⁶Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.

⁷Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.

⁸Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.

⁹Department of Entomology, University of Agriculture, Faisalabad, Pakistan.

¹⁰Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.

Article Info

Article Received: 02 October 2025, Article Revised: 25 October 2025, Published on: 01 November 2025.

*Corresponding author: Tasawar Jobal

Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan

https://doi.org/10.5281/zenodo.17558223

How to cite this Article:

Tasawar Iqbal1*, Nadeem Ahmed2, Saqlain Mushtaq3, Muhammad Mueen Akhter4, Ameer Hamza5, Ahmad Raza Javed6, Muhammad Talha Taj7, Adnan Habib8 Umar Farooq Ahmad9 Zulqarnain Haider10. (2025).ASSESSING THE BIODIVERSITY AND ECOLOGICAL SIGNIFICANCE OF CHANGA MANGA: ONE OF THE WORLD'S OLDEST HAND-PLANTED FORESTS IN PAKISTAN. Journal of Internal Medicine and Surgery, 2(9), 01-30.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

The Changa Manga Forest is located in Punjab, within the Chunian Tehsil of the Kasur District, Pakistan, stands as one of the world's oldest and largest handplanted forests, established in 1866 during the British colonial era to supply fuelwood for railway operations. Over time, it has evolved into a unique ecological landscape that supports rich biodiversity and provides critical ecosystem services in an otherwise human-dominated region. This review aims to assess the biodiversity status, ecological significance, and conservation challenges of the Changa Manga Forest by synthesizing available literature from scientific databases, government reports, and environmental surveys published between 1980 and 2025. The review systematically compiles data on floral and faunal diversity, forest composition, and ecosystem functions, with emphasis on dominant species, regeneration dynamics, and wildlife conservation value. Findings reveal substantial species richness across various taxa, including over 50 tree species, numerous avian populations, and significant invertebrate diversity. However, the forest faces threats from anthropogenic pressures, habitat fragmentation, invasive species, and climate change. Despite restoration and management interventions, ecological degradation remains a concern. The study concludes that Changa Manga serves as a vital biodiversity refuge and a model for sustainable reforestation. Strengthened conservation strategies, community engagement, and continuous monitoring are recommended to maintain its ecological integrity and long-term sustainability.

KEYWORDS: Changa Manga; Hand-Planted Forest; Biodiversity; Pakistan; Ecosystem Services; Forest Management; Conservation; Reforestation; Kasur District; Chunian Tehsil; Animals; Birds.

1. INTRODUCTION

Planted forests play a crucial role in global biodiversity conservation, carbon sequestration, and sustainable resource management. They occupy nearly 7% of the world's total forest area and contribute significantly to timber production, ecosystem restoration, and climate regulation. In developing countries, planted forests have become

essential in mitigating deforestation and maintaining ecological balance in regions where natural forests have been extensively degraded. In Pakistan, forest cover remains below 5% of the total land area, making artificial forests vital for ecological and socioeconomic stability. These forests not only supply wood and nontimber resources but also serve as critical habitats for diverse plant and animal species in otherwise humandominated landscapes(Sharif et al., 2022a). The Changa Manga Forest in Punjab, Pakistan, established in 1866 during British rule, is one of the world's largest man-made forests. Created to supply fuelwood for the North-Western Railway, it transformed arid scrubland into a thriving green landscape through canal irrigation and systematic plantation. Initiated by Dr. John Lindsay Stewart and later managed under B. Ribbentrop's 1871-72 plan, the forest became a model of sustainable forestry. By the 20th century, it spanned nearly 12,000 acres, featuring valuable species like Sheesham (Abrar et al., 2021). Despite challenges like logging and fires, Changa Manga remains a symbol of environmental engineering and human-driven ecological transformation. Despite its historical and ecological

importance, scientific understanding of Changa Manga's biodiversity and ecological dynamics remains limited. Previous research has primarily focused on its forestry and timber yield aspects, leaving considerable gaps in comprehensive biodiversity assessments, species distribution patterns, and ecosystem service evaluations. The increasing threats of habitat fragmentation, illegal logging, and climate change further underscore the urgency for updated ecological evaluations. This review aims to synthesize available scientific and technical data to assess the biodiversity, ecological functions, and conservation challenges of the Changa Manga Forest. It covers published and unpublished sources between 1980 and 2025, encompassing floral and faunal diversity, ecosystem services, and management practices. By integrating data across multiple taxonomic groups plants, mammals, birds, reptiles, amphibians, and invertebrates, the review seeks to provide a holistic understanding of Changa Manga's significance and guide future conservation and policy interventions (Sharif et al., 2022a).

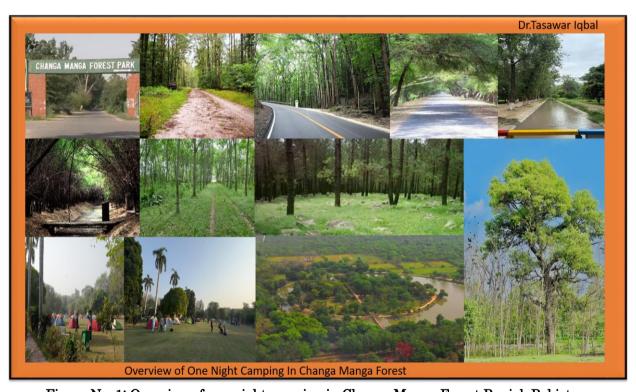


Figure No. 1: Overview of one-night camping in Changa Manga Forest Punjab Pakistan.

2. STUDY AREA: CHANGA MANGA AT A GLANCE

The Changa Manga Forest is located in the Kasur and Lahore districts of Punjab Province, Pakistan, approximately 80 kilometers southwest of Lahore city. Geographically, it lies between 30°55′ to 31°00′ N latitude and 73°55′ to 74°05′ E longitude, covering an area of about 12,000 acres (approximately 48 square

kilometers). It is managed by the Punjab Forest Department under the administrative control of the Lahore Forest Division. The forest is easily accessible by the Lahore–Multan Road and serves as a major ecological and recreational zone within the region. The climate of the area is classified as semi-arid subtropical, characterized by hot summers and mild

winters. Average annual rainfall ranges from 450 to 650 millimeters, with the majority occurring during the monsoon season (July to September). Mean summer temperatures often exceed 40°C, while winter temperatures can drop below 5°C. The forest's soils are predominantly alluvial loams and sandy loams, derived from riverine deposits, which are moderately fertile and well-drained. Hydrologically, the forest depends heavily on irrigation from the Upper Bari Doab Canal, an engineered water system that has sustained plantation growth and maintained soil moisture levels since its establishment in the late 19th century. Changa Manga is surrounded primarily by intensive agricultural lands, with nearby villages and urban settlements contributing to both economic opportunities and anthropogenic pressures. The surrounding matrix ofcropland and rural fragmented natural development has habitats. increasing edge effects and reducing wildlife corridors. Historically, the forest was initiated in 1866 during the British colonial era as a managed plantation to supply fuelwood for railway locomotives. Initially, species such as Dalbergia sissoo (shisham), Acacia nilotica (kikar), and Eucalyptus camaldulensis were cultivated for their rapid growth and fuelwood potential. In the mid-20th century, management objectives shifted from purely industrial purposes toward timber production, biodiversity conservation, and recreation. Over the decades, the forest has undergone phases of degradation and rehabilitation, including large-scale replanting initiatives following overexploitation. Recent efforts by the Punjab Forest Department and environmental organizations have emphasized ecosystem restoration, wildlife conservation, and ecotourism development, marking Changa Manga as a key site for sustainable forestry and ecological research in Pakistan (S. S. Ahmad et al., 2014).

Location and Extent

The Changa Manga Forest is situated in the Kasur and Lahore districts of Punjab Province, Pakistan, approximately 80 kilometers southwest of Lahore. Geographically, it lies between 30°55′ to 31°00′ N latitude and 73°55′ to 74°05′ E longitude, covering an estimated area of 12,000 acres (about 48 square kilometers). The forest falls under the administrative control of the Punjab Forest Department, managed through the Lahore Forest Division. It is easily accessible via the Lahore–Multan Road, making it both an ecological and recreational landmark in central Punjab.

Climate

Changa Manga experiences a semi-arid subtropical climate, characterized by hot summers and mild winters. The mean annual rainfall ranges between 450 and 650 millimeters, concentrated mostly during

the monsoon season (July-September). The average summer temperature often exceeds 40°C, while winter temperatures may fall below 5°C. The pronounced temperature fluctuations and seasonal rainfall patterns strongly influence vegetation growth, soil moisture levels, and species composition within the forest ecosystem.

Soils and Hydrology

The forest soils are primarily alluvial loams and sandy loams, originating from riverine deposits of the Indus Basin. These soils are moderately fertile, well-drained, and suitable for plantation forestry. Changa Manga's hydrological system relies extensively on canal irrigation, primarily sourced from the Upper Bari Doab Canal, constructed during the colonial period. The irrigation network ensures consistent water availability for plantation growth and has been vital in sustaining forest vegetation under semi-arid conditions.

Land-Use Environment

Changa Manga is surrounded predominantly by agricultural fields and rural settlements, which form a mosaic of croplands and human habitation. This agro-ecological matrix provides economic benefits to local communities but also exerts significant anthropogenic pressure on forest resources through encroachment, fuelwood extraction, and livestock grazing. The lack of buffer zones and increasing landuse conversion have contributed to habitat fragmentation and reduced ecological connectivity with nearby natural areas.

Historical Timeline and Management Evolution

The establishment of Changa Manga dates back to 1866, under British colonial administration, when it was created to meet the fuelwood demands of the North-Western Railway. Early plantation efforts focused on fast-growing native and exotic species such as *Dalbergia sissoo* (shisham), *Acacia nilotica* (kikar), and *Eucalyptus camaldulensis*. By the mid-20th century, management goals evolved from industrial fuel production to timber yield, biodiversity conservation, and recreation. Over time, the forest faced cycles of degradation, overexploitation, and rehabilitation.

In recent decades, the Punjab Forest Department, along with environmental organizations, has launched several restoration and conservation projects to enhance biodiversity and promote ecotourism. These initiatives aim to balance ecological sustainability with socio-economic development, reinforcing Changa Manga's status as a model for reforestation and sustainable forest management in Pakistan (M. Ahmad, 2017).

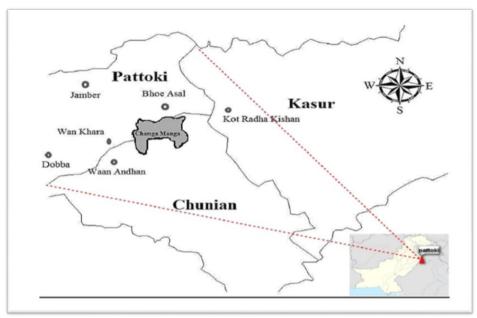


Figure No. 2: Map of Changa Manga Forest.

3. VEGETATION AND FLORA

Tree Species Composition and Structure

The vegetation of the Changa Manga Forest is primarily composed of planted tree species, originally established under British colonial administration to serve as a sustainable source of timber and fuelwood. The dominant tree species include *Dalbergia sissoo* (shisham), *Acacia nilotica* (kikar), *Eucalyptus camaldulensis, Bombax ceiba* (simal), and *Morus alba* (white mulberry). These species were selected for their fast growth rates, adaptability to semi-arid conditions, and high wood yield. Over the decades, natural regeneration has occurred beneath these

plantations, gradually increasing the structural complexity of the forest. The forest canopy height generally ranges between 15 to 25 meters, depending on species composition and site conditions. The stand structure varies across compartments, reflecting different management regimes, irrigation availability, and soil fertility. Studies by the Punjab Forest Department and Pakistan Forest Institute indicate that *Dalbergia sissoo* and *Acacia nilotica* remain the most dominant and economically valuable species, contributing to over 60% of the total basal area in many compartments (Fatima et al., 2025).

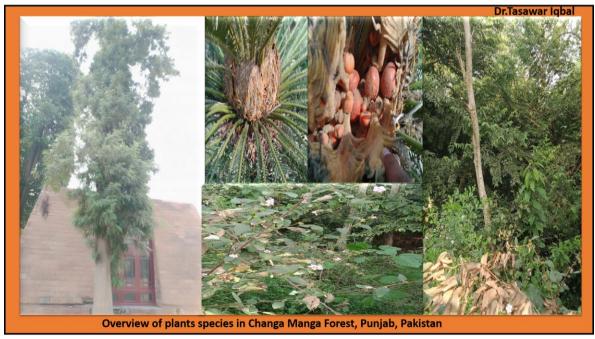


Figure No. 3: Plants Species in Changa Manga Forest, Punjab, Pakistan.

Understorey Vegetation and Regenerative Dynamics

The understorey vegetation is relatively sparse but ecologically important for soil stabilization, nutrient cycling, and wildlife habitat. Common understorey species include grasses such as Cynodon dactylon (Bermuda grass), Desmostachya bipinnata, and herbs like Parthenium hysterophorus, Chenopodium album, and Achyranthes aspera. These species thrive in partially shaded areas and disturbed forest patches. Natural regeneration of key native species has been observed, particularly in areas with reduced grazing and adequate moisture levels. Seedling establishment of Dalbergia sissoo and Acacia nilotica is most successful in canal-irrigated zones, whereas Eucalyptus camaldulensis regenerates primarily through coppicing. Regeneration studies reveal that anthropogenic disturbance, soil compaction, and invasive weeds are major constraints on natural recruitment. Effective management interventions such as selective thinning and enrichment planting have been implemented to improve regeneration and maintain species diversity(ASAD et al., n.d.)(Iqbal, Ahmed, et al., n.d.).

Native, Non-Native, and Invasive Species

The Changa Manga Forest contains a mix of native and exotic species, reflecting its artificial origin and long history of silvicultural experimentation. Native species like *Dalbergia sissoo*, *Acacia nilotica*, *Albizia lebbeck*, and *Ficus religiosa* contribute to local biodiversity and ecosystem balance. However, the introduction of non-native species, particularly *Eucalyptus camaldulensis* and *Prosopis juliflora*, has altered ecological dynamics. *Eucalyptus camaldulensis* though fast-growing and drought-tolerant has been criticized for its high water uptake,

allelopathic effects, and low understory biodiversity. Similarly, *Prosopis juliflora*, originally introduced for fuelwood production, has become an aggressive invasive species, outcompeting native vegetation and altering soil chemistry. These invasions threaten native plant communities and reduce available forage for wildlife. Restoration efforts now emphasize replacing invasive exotics with indigenous species to restore ecological functionality (KHALIL et al., 2022).

Floristic Diversity and Ecological Indicators

Floristic surveys conducted by various researchers and the Punjab Forest Department report that the Changa Manga Forest hosts over 70 species of trees and shrubs, 50 species of herbs, and 25 species of grasses. The Shannon-Wiener diversity index (H') values for tree communities range between 1.8 and 2.4, indicating moderate diversity typical of managed forests. The Simpson's diversity index values also confirm that no single species completely dominates, reflecting relatively balanced species distribution in well-managed compartments. In terms of alpha diversity (within-habitat diversity), the central irrigated zones exhibit higher species richness due to stable moisture and nutrient conditions, while beta (between-habitat diversity) pronounced between irrigated and dry compartments, reflecting strong environmental gradients. Overall, the vegetation structure of Changa Manga represents a dynamic interplay between artificial plantation management and natural successional processes. The ongoing transition toward mixed native plantations and enrichment of degraded sites highlights its potential as a model for ecological restoration and sustainable forest management in semi-arid regions of South Asia (Waheed et al., 2022).

Figure No. 4: Plants Species in Changa Manga Forest, Punjab, Pakistan.

Table 1: Tree Species in the Changa Manga Forest, Punjab, Pakistan.

Sr.No	ree Species in the Cl	Scientific	Native/Exotic	Stall.	Notes on Occurrence in
Sr.No	Common Nome	Name		TITONI CA AATT	Notes on Occurrence in
1	Common Name		Status	IUCN Status	Changa Manga
1	Shisham / Sissoo	Dalbergia	Madina	Tasat Canasan	Documented – widely
0	Sissoo	sissoo	Native	Least Concern	planted in irrigation zones
2	TZ:1 / D 1 1	4	NT 4	T 4 C	Documented – major
0	Kikar / Babul	Acacia nilotica	Native	Least Concern	plantation species
3	D: D 1 G	Eucalyptus		N D 1 . 1	Documented – used as fast-
	River Red Gum	camaldulensis	Exotic	Not Evaluated	growing plantation species
4	White	7.6		N D 1 . 1	Likely – used as fodder and
	Mulberry	Morus alba	Exotic	Not Evaluated	shade tree
5	Sacred Fig /	T. 1	37	N D 1 . 1	Documented – part of
	Peepal	Ficus religiosa	Native	Not Evaluated	mixed native regeneration
6					Documented – mature
		Ficus	37	T	individuals near water
	Banyan	benghalensis	Native	Least Concern	bodies
7		Azadirachta			Documented – common
	Neem	indica	Native	Least Concern	avenue tree
8		Prosopis			Documented – invasive
	Mesquite	juliflora	Exotic	Least Concern	patches observed
9					Documented – shade tree
	Siris / Lebbek	Albizia lebbeck	Native	Least Concern	and soil enricher
10	Jamun / Black	Syzygium			Documented – planted in
	Plum	cumini	Native	Least Concern	moist areas
11	Moringa /	Moringa			Likely – found in
	Drumstick	oleifera	Native	Least Concern	peripheral zones
12	Ber / Indian	Ziziphus			Documented – found in dry
	Jujube	mauritiana	Native	Least Concern	edges
13		Tamarix			Documented – along water
	Tamarisk	aphylla	Native	Least Concern	channels
14		Casuarina			Likely – used as windbreak
	Casuarina	equisetifolia	Exotic	Least Concern	plantation
15		Melia			Documented – avenue and
	Chinaberry	azedarach	Exotic	Least Concern	ornamental planting
16	Pongamia /	Millettia			Likely – found in
	Karanja	pinnata	Native	Least Concern	demonstration plots
17		Mangifera			Likely – near residential
	Mango	indica	Native	Least Concern	quarters
18					Ornamental – in park
	Sweet Orange	Citrus sinensis	Exotic	Not Evaluated	areas
19					Ornamental – garden
	Lemon	Citrus limon	Exotic	Not Evaluated	planting
20		Terminalia			Ornamental – scattered
	Indian Almond	catappa	Exotic	Least Concern	individuals
21		Terminalia			Documented – riverbank
	Arjun	arjuna	Native	Least Concern	stabilization species
22		Terminalia			Likely – part of mixed
	Bahera	bellirica	Native	Least Concern	plantations
23	Haritaki /	Terminalia			Likely – mixed forest
	Myrobalan	chebula	Native	Least Concern	restoration plots
24		Punica			Ornamental – near rest
	Pomegranate	granatum	Native	Least Concern	houses
25	Amla / Indian	Phyllanthus			Documented – medicinal
	Gooseberry	emblica	Native	Least Concern	plantation area
26		Artocarpus			Ornamental –
-	Jackfruit	heterophyllus	Exotic	Least Concern	demonstration area
	Jackiruit	псилориунив	HAUMU	Transf Conferni	acmononamon area

27		Ziziphus			Likely – similar ecological
21	Chinese Jujube	zizipnus jujuba	Exotic	Least Concern	
28	Cilinese aujube	jujuva	EXOUC	Least Concern	range Ornamental – in garden
28	Common Fig	Figure comice	Exotic	Locat Concom	belts
90	Common Fig	Ficus carica	EXOUC	Least Concern	Documented – ornamental
29	G 1 m	Erythrina	37	T	
	Coral Tree	variegata	Native	Least Concern	species in periphery
30		Jacaranda		T	Ornamental – roadside
	Jacaranda	mimosifolia	Exotic	Least Concern	plantation
31	Gulmohar /				Documented – along main
	Flame Tree	Delonix regia	Exotic	Least Concern	roads
32					Documented – ornamental
	Golden Shower	Cassia fistula	Native	Least Concern	and medicinal value
33		Grevillea			Ornamental – scattered
	Silk Oak	robusta	Exotic	Least Concern	stands
34					Likely – used for soil
	Golden Wattle	Acacia saligna	Exotic	Least Concern	binding
35		Prosopis			Documented – dry zone
	Shami / Ghaf	cineraria	Native	Least Concern	plantation
36	Weeping	Salix	TVAUIVE	Least Concern	Documented – near water
30	Willow	babylonica	Errotio	Least Concern	channels
97	WIIIOW		Exotic	Least Concern	
37	D 1	Populus		T	Documented – timber
	Poplar	deltoides	Exotic	Least Concern	plantation species
38					Likely – experimental
	Olive	Olea europaea	Exotic	Least Concern	plantation
39	Chinese	Ficus			Ornamental – landscape
	Banyan	microcarpa	Exotic	Least Concern	planting
40		Ailanthus			Documented – invasive
	Tree-of-Heaven	altissima	Exotic	Least Concern	tendency
41		Lagerstroemia			
	Crape Myrtle	indica	Exotic	Least Concern	Ornamental – park area
42	Crape Myrthe	Psidium	DAOGIC	Least concern	ornamentar park area
42	Guava	guajava	Native	Least Concern	Likely – near residences
43	Guava		Native	Least Concern	0 . 1
45	D A 1 .	Syzygium	D4'-	T C	
	Rose Apple	jambos	Exotic	Least Concern	occurrence
44		Citrus			
	Mandarin	reticulata	Exotic	Not Evaluated	Ornamental – limited use
45	Manila	Pithecellobium			Documented – naturalized
	Tamarind	dulce	Exotic	Least Concern	along roads
46	Butea / Flame	Butea			Documented – sporadic
	of Forest	monosperma	Native	Least Concern	stands
47	Kachnar /	Bauhinia			Documented – ornamental
	Orchid Tree	variegata	Native	Least Concern	avenue tree
48	Eucalyptus	Eucalyptus			Documented – industrial
10	tereticornis	tereticornis	Exotic	Not Evaluated	plantation
49	Eucalyptus	Eucalyptus	EXOUC	110t Evaluated	piantation
49			Errotio	Not Evoluated	Tilraler limited arreagt
<u> </u>	globulus	globulus	Exotic	Not Evaluated	Likely – limited extent
50	D 1 0 1	Cedrus	37	T	Ornamental – introduced
	Deodar Cedar	deodara	Native	Least Concern	species
51		Cupressus			
	Italian Cypress	sempervirens	Exotic	Least Concern	Ornamental – garden use
52	Himalayan	Pinus			Ornamental – limited
	Pine	wallichiana	Native	Least Concern	individuals
53					Likely – natural
	Wild Fig	Ficus palmata	Native	Least Concern	regeneration areas
54	Black Mulberry	Morus nigra	Exotic	Not Evaluated	Likely – cultivated form
55		Ziziphus	Native	Least Concern	i
ออ	Sidr / Nabq	zizipnus	mauve	Least Concern	Documented – boundary

		spina-christi			zones
56		Acacia			Documented – dry and arid
	Phulai	modesta	Native	Least Concern	margins
57	Indian Elm /	Holoptelea			Documented – native tree
	Chir	integrifolia	Native	Least Concern	patches
58		Samanea			
	Rain Tree	saman	Exotic	Least Concern	Ornamental – shade tree
59		Sterculia			
	Sterculia	foetida	Exotic	Least Concern	Ornamental – occasional
60	Peruvian				
	Pepper	Schinus molle	Exotic	Least Concern	Likely – in landscaping
61	Indian Laurel /	Terminalia			Likely – experimental
	Saj	elliptica	Native	Least Concern	planting
62					Likely – planted near
	Chitwan Fig	Ficus neriifolia	Native	Least Concern	streams
63	Bay Laurel	Laurus nobilis	Exotic	Least Concern	Ornamental – rare
64	Alstonia / Devil	Alstonia			Documented – scattered
	Tree	scholaris	Native	Least Concern	individuals
65		Lagerstroemia			Ornamental – along
	Ceylon Oak	speciosa	Exotic	Least Concern	avenues
66	Eucalyptus	Eucalyptus			Documented – extensive
	hybrids	spp.	Exotic	Not Evaluated	plantations
67					Documented – mixed
	Indian Beech	Melia dubia	Native	Least Concern	plantations
69	Soapnut /	Sapindus			Likely – scattered
	Reetha	mukorossi	Native	Least Concern	individuals
70	Canary Island	Phoenix			Ornamental – along entry
	Palm	canariensis	Exotic	Least Concern	roads

Figure No 5: Overview of Ornamental plants in Changa Manga Forest, Punjab, Pakistan.

Table 2: Shrub Species in the Changa Manga Forest, Punjab, Pakistan.

Sr.No	Common Name	Scientific	Native/Exotic	IUCN	Notes on Occurrence in Changa
		Name	Status	Status	Manga
1		Lantana		Least	Documented – common invasive
	Lantana	camara	Exotic	Concern	shrub in open areas
2		Ziziphus		Least	Documented – dominant native
_	Jharberi	nummularia	Native	Concern	shrub in dry areas
3		Lawsonia		Least	Likely – planted in managed
	Henna / Mehndi	inermis	Native	Concern	plots
4		Dodonaea		Least	Documented – used for soil
	Dodonaea	viscosa	Native	Concern	binding
5	Carissa /	Carissa		Least	Documented – thorny shrub in
	Karonda	spinarum	Native	Concern	degraded zones
6		•		Least	Documented – medicinal shrub
	Vitex	Vitex negundo	Native	Concern	along edges
7		Bougainvillea		Not	Ornamental – planted near
	Bougainvillea	spectabilis	Exotic	Evaluated	offices
8		•		Least	
	Cassia tora	Cassia tora	Native	Concern	Likely – found in disturbed soils
9		Plumbago		Least	Likely – medicinal species in
	Plumbago	zeylanica	Native	Concern	shaded areas
10		Calotropis		Least	Documented – common
	Calotropis / Aak	procera	Native	Concern	xerophytic shrub
11	•	Capparis		Least	
	Capparis / Kachri	decidua	Native	Concern	Documented – dry sandy areas
12				Least	Documented – along dry
	Aerva	Aerva javanica	Native	Concern	margins
13		Leptadenia		Least	Documented – found in sandy
	Leptadenia	pyrotechnica	Native	Concern	sites
14	1	Nicotiana		Least	
	Tobacco bush	glauca	Exotic	Concern	Likely – escaped ornamental
15	Tecoma / Yellow			Least	Ornamental – planted near
	bell	Tecoma stans	Exotic	Concern	roads
16				Least	
	Ixora	Ixora coccinea	Exotic	Concern	Ornamental – garden species
17		Clerodendrum		Least	<u> </u>
	Clerodendrum	inerme	Exotic	Concern	Ornamental – hedgerow plant
18		Justicia		Least	Documented – medicinal shrub
	Justicia	adhatoda	Native	Concern	(vasaka)
19		Cassia		Least	
	Cassia auriculata	auriculata	Native	Concern	Likely – found in restored plots
20		Croton		Least	•
	Croton	bonplandianus	Exotic	Concern	Likely – along disturbed edges
21		Ruellia		Least	Ornamental – planted near
	Ruellia	tuberosa	Exotic	Concern	pathways
22				Least	Ornamental – hedge and
	Duranta	Duranta erecta	Exotic	Concern	boundary plant
23	Hibiscus / China	Hibiscus rosa-		Not	Ornamental – planted in
	rose	sinensis	Exotic	Evaluated	gardens
24		Jatropha		Least	Ornamental – experimental
	Jatropha	curcas	Exotic	Concern	biofuel plot
25	v p	<i>Euphorbia</i>		Least	Documented – xerophytic hedge
	Euphorbia	tirucalli	Native	Concern	species
	P				-F-20200
26				Least	
26	Cassia alata	Cassia alata	Exotic	Least Concern	Likely – ornamental plantation

	nocturnum	nocturnum		Concern	jasmine
28		Barleria		Least	Documented – medicinal shrub
	Barleria	prionitis	Native	Concern	in open woodlands
29		Clitoria		Least	Likely – planted for research
	Clitoria	ternatea	Native	Concern	plots
30		Abutilon		Least	Documented – disturbed ground
	Abutilon	indicum	Native	Concern	flora
31		Acalypha		Least	Likely – found in shaded
	Acalypha	indica	Native	Concern	understory
32	<i>V</i> 1	Alternanthera		Least	
	Alternanthera	sessilis	Exotic	Concern	Ornamental – along lawns
33	THEOTHAIL	20001110		Least	Documented – naturalized in
	Lawsonia	Lawsonia alba	Native	Concern	dry regions
34	Edwooma	Lippia Lippia	1144110	Least	ary regions
04	Lippia	nodiflora	Native	Concern	Likely – found near water bodies
35	Cassia	Cassia	TVACIVE	Least	Documented – under open
30	occidentalis	occidentalis	Native	Concern	canopy
36	occidentans	Crotalaria	Ivalive	Least	Canopy
30	Crotalaria	juncea	Native	Concern	Likely – nitrogen-fixing shrub
37	Cittalaria	Indigofera	Ivative	Least	-
31	Indigofera	tinctoria	Native	Concern	Documented – common leguminous shrub
20	Solanum /		Native	Least	
38		Solanum	NI-4'		Documented – scattered
00	Nightshade	incanum	Native	Concern	undergrowth
39	A 1 41	Achyranthes	NT 1:	Least	Documented – roadside and
40	Achyranthes	aspera	Native	Concern	degraded areas
40	Clerodendrum	Clerodendrum	37	Least	Documented – medicinal
	phlomidis	phlomidis	Native	Concern	hedgerow species
41		~		Least	Likely – ornamental shrub
	Cassia siamea	Cassia siamea	Exotic	Concern	planting
42	_			Not	
	Tagetes	Tagetes erecta	Exotic	Evaluated	Ornamental – flowerbeds
43		Tephrosia		Least	Documented – nitrogen fixer in
	Tephrosia	purpurea	Native	Concern	dry soils
44	Calotropis	Calotropis		Least	Documented – xeric shrub
	gigantea	gigantea	Native	Concern	species
45		Pergularia		Least	Likely – climbing shrub in open
	Pergularia	daemia	Native	Concern	fields
46				Least	
	Senna italica	Senna italica	Native	Concern	Documented – sandy areas
47				Least	Likely – rare in degraded forest
	Cassia absus	Cassia absus	Native	Concern	edges
48				Least	Documented – common
	Leucas	Leucas aspera	Native	Concern	medicinal herbaceous shrub
49		Ocimum		Least	Documented – cultivated for
	Ocimum / Basil	sanctum	Native	Concern	cultural and medicinal use
50				Least	
	Aerva lanata	Aerva lanata	Native	Concern	Likely – near canal margins

Table 3: Grass Species in the Changa Manga Forest, Punjab, Pakistan.

Sr.	Common	Scientific	Native/Exotic	IUCN	Notes on Occurrence in Changa Manga
No	Name	Name	Status	Status	
1	Bermuda	Cynodon	Native	Least	Documented - common throughout
	Grass	dactylon		Concern	forest floor
2	Vetiver	Vetiveria	Native	Least	Documented – used for soil stabilization
	Grass	zizanioides		Concern	

3	Khabal Grass	Cymbopogon jwarancusa	Native	Least Concern	Documented – aromatic grass in open
4	Spear Grass	Heteropogon	Native	Least	areas Documented – common in dry patches
		contortus		Concern	
5	Saccharum	Saccharum	Native	Least	Documented – along canal banks and
	Grass	spontaneum		Concern	open spaces
6	Dhaman	Cenchrus	Native	Least	Documented – dominant pasture grass
	Grass	ciliaris		Concern	
7	Buffel Grass	Cenchrus	Native	Least	Documented – natural pasture areas
		setigerus		Concern	
8	Para Grass	Brachiaria	Exotic	Least	Documented - near water bodies and
		mutica		Concern	irrigation channels
9	Elephant	Pennisetum	Exotic	Least	Ornamental/forage – planted for erosion
	Grass	purpureum		Concern	control
10	Guinea	Panicum	Exotic	Least	Likely – planted in managed pastures
	Grass	maximum		Concern	
11	Johnson	Sorghum	Exotic	Least	Documented - along roadsides and
	Grass	halepense		Concern	disturbed lands
12	Kallar Grass	Leptochloa	Native	Least	Documented – salt-tolerant grass in
		fusca		Concern	saline soils
13	Love Grass	Eragrostis	Native	Least	Documented – forest understory areas
		tenella		Concern	
14	Goose Grass	Eleusine	Native	Least	Documented – common weed in forest
	0.0000 0.1400	indica	2100210	Concern	margins
15	Setaria	Setaria	Native	Least	Documented – common forage grass
10	Grass	glauca	2100210	Concern	200 minoriou common torago grass
16	Paspalum	Paspalum	Native	Least	Documented – found near moist
10	1 dopartin	distichum	2100210	Concern	habitats
17	Wild Oat	Avena fatua	Exotic	Least	Likely – found near cultivated
	Wild out	117011a lavaa	BROULC	Concern	boundaries
18	Baru Grass	Sporobolus	Native	Least	Documented – sandy patches and
10	Dara Grass	diander	TVACIVE	Concern	disturbed sites
19	Rescue	Bromus	Exotic	Least	Likely – introduced as pasture grass
10	Grass	catharticus	LAOUIC	Concern	likely introduced as pastare grass
20	Ryegrass	Lolium	Exotic	Least	Ornamental – experimental plot species
20	ltyegrass	perenne	EXOUC	Concern	Ornamental – experimental plot species
21	Crowfoot	Dactylocteniu	Native	Least	Documented – forest edges and
4 1	Grass	m aegyptium	INALIVE	Concern	pathways
22	Indian	Chloris	Native	Least	Documented – common in open
44	Goosegrass	barbata	ranve	Concern	clearings
23	Panic Grass	Panicum	Native	Least	Documented – dry grasslands and canal
20	1 and Grass	antidotale	ranve	Concern	banks
9.4	Vonan:		Frotic		
24	Kangni	Setaria italica	Exotic	Least	
or.	Dlug Dania	Danious	Notire	Concern	agricultural fields
25	Blue Panic	Panicum	Native	Least	Documented – dominant tall grass
		antidotale		Concern	species

Table 4: Pharmacological Importance of Trees, Shrubs, and Grasses of the Changa Manga Forest, Punjab, Pakistan.

Sr.	Plant	Common	Scientific Name	Pharmacological Importance		
No	Type	Name				
1	Tree	Neem	Azadirachta	Used for antibacterial, antifungal, and anti-		
			indica	inflammatory properties		
2	Tree	Sheesham	Dalbergia sissoo	Antioxidant and antimicrobial activities; used		
				in traditional medicine		
3	Tree	Kikar /	Acacia nilotica	Used for wound healing, anti-inflammatory		

		Babul		and antidiabetic activity
4	Tree	Amaltas	Cassia fistula	Laxative, antimicrobial, and antioxidant properties
5	Tree	Mango	Mangifera indica	Used for antidiabetic, anti-inflammatory, and immunomodulatory effects
6	Tree	Arjun	Terminalia arjuna	Cardioprotective and antioxidant activities
7	Tree	Eucalyptus	Eucalyptus camaldulensis	Antiseptic and anti-inflammatory essential oils
8	Tree	Mulberry	Morus alba	Antidiabetic and neuroprotective properties
9	Tree	Banyan	Ficus benghalensis	Used for wound healing and diabetes management
10	Tree	Peepal	Ficus religiosa	Antioxidant and anti-inflammatory activities
1	Shrub	Vitex / Nirgundi	Vitex negundo	Used for arthritis, inflammation, and analgesic properties
2	Shrub	Adhatoda / Vasaka	Justicia adhatoda	Expectorant and bronchodilator for respiratory diseases
3	Shrub	Aak	Calotropis procera	Analgesic, anti-inflammatory, and wound healing uses
4	Shrub	Carissa / Karonda	Carissa spinarum	Antioxidant and antimicrobial properties
5	Shrub	Dodonaea	Dodonaea viscosa	Anti-inflammatory and hepatoprotective effects
6	Shrub	Cassia tora	Cassia tora	Laxative and antidiabetic properties
7	Shrub	Lawsonia / Henna	Lawsonia inermis	Antimicrobial and antioxidant properties
8	Shrub	Leptadenia	Leptadenia pyrotechnica	Used for diuretic and antimicrobial activity
9	Shrub	Barleria	Barleria prionitis	Antioxidant and anti-inflammatory potential
10	Shrub	Clerodendr um	Clerodendrum inerme	Used for anti-inflammatory and antipyretic properties
1	Grass	Vetiver	Vetiveria zizanioides	Used for skin diseases, stress relief, and as a coolant
2	Grass	Khabal Grass	Cymbopogon jwarancusa	Aromatic; antimicrobial and insecticidal uses
3	Grass	Dhaman Grass	Cenchrus ciliaris	Used as forage; soil stabilization; minimal pharmacological use
4	Grass	Saccharum Grass	Saccharum spontaneum	Traditionally used for urinary and kidney disorders
5	Grass	Para Grass	Brachiaria mutica	Primarily forage; no major pharmacological use
6	Grass	Blue Panic	Panicum antidotale	Antidiabetic and antioxidant activities reported
7	Grass	Crowfoot Grass	Dactyloctenium aegyptium	Antibacterial potential studied in extracts
8	Grass	Kallar Grass	Leptochloa fusca	Used in phytoremediation of saline soils
9	Grass	Johnson Grass	Sorghum halepense	Source of antioxidant phenolic compounds
10	Grass	Guinea Grass	Panicum maximum	Forage species with antioxidant compounds

4. FAUNAL BIODIVERSITY

Mammals

The Changa Manga Forest supports a diverse assemblage of large and small mammalian species, representing both forest-dwelling and generalist taxa. Historically, large mammals such as the Asiatic jackal (Canis aureus), Indian mongoose (Herpestes edwardsii), and wild boar (Sus scrofa) have been recorded as dominant carnivorous and omnivorous species. Smaller mammals, including the Indian hare (Lepus nigricollis), house mouse (Mus musculus), and Indian palm squirrel (Funambulus pennantii), are commonly observed throughout the forest. Recent

wildlife monitoring by the Punjab Wildlife and Parks Department indicates that canopy cover restoration and improved water availability have facilitated the gradual return of certain medium-sized mammals such as jungle cat (Felis chaus) and porcupine (Hystrix indica). However, the fragmentation of habitat and limited ecological corridors connecting Changa Manga to other forest patches constrain the movement of larger mammals. Historically, species such as nilgai (Boselaphus tragocamelus) were reported, but they are now locally extinct due to habitat loss and poaching (Aslam et al., 2022) (Iqbal, Altaf, et al., n.d.).

Table 5: Mammalian Diversity of Changa Manga Forest, Punjab, Pakistan.

Sr.TypeCommon NameScientific Name1Large Indian Mammal JackalCanis aure	c Status eus Native	Status	Changa Manga
	eus Native		~
Mammal Jackal		Least	Documented - common
		Concern	carnivore in the forest
2 Large Wild Boar Sus scrofa	Native	Least	Documented –
Mammal		Concern	widespread, causes crop
			damage nearby
3 Large Nilgai Boselaphu		Least	Likely – occasional
Mammal (Blue Bull) tragocame		Concern	sightings reported
4 Large Rhesus Macaca	Native	Least	Documented – common
Mammal Macaque mulatta		Concern	near forest edges
5 Large Indian Paradoxur		Least	Documented –
Mammal Palm Civet hermaphro	odit	Concern	nocturnal, arboreal
us			species
6 Large Jungle Cat Felis chau	s Native	Least	Documented - found in
Mammal		Concern	grassland patches
7 Large Indian Hystrix in	lica Native	Least	Documented –
Mammal Porcupine		Concern	burrowing species,
	37		common
8 Large Small Herpestes	Native	Least	Documented – seen near
Mammal Indian javanicus		Concern	plantation edges
Mongoose	NT 4	T ,	D + 1
9 Large Common Herpestes	Native	Least	Documented – active
Mammal Grey edwardsii		Concern	during day near human
Mongoose 10 Large Chinkara Gazella	Native	Least	areas Rare – historically
Mammal (Indian bennettii	Native	Concern	present, now seldom
Gazelle)		Concern	seen
11 Small Indian Lepus	Native	Least	Documented – common
Mammal Hare nigricollis	Ivative	Concern	in grasslands
12 Small Five- Funambul	us Native	Least	Documented – abundant
Mammal striped pennantii	as Ivalive	Concern	on trees
Palm		Concern	on brees
Squirrel			
13 Small Soft-furred Millardia	Native	Least	Documented – common
Mammal Field Rat meltada		Concern	in undergrowth
14 Small House Mus	Native	Least	Common – near
Mammal Mouse musculus		Concern	settlements and forest
			quarters
15 Small Indian Tatera ind	ica Native	Least	Documented –
Mammal Gerbil		Concern	burrowing rodent in dry
			areas

16	Small	Indian	Pipistrellus	Native	Least	Documented - found
	Mammal	Pipistrelle	coromandra		Concern	roosting in tree hollows
		Bat				
17	Small	Lesser	Rhinopoma	Native	Least	Likely – roosts in
	Mammal	Mouse-	hardwickii		Concern	abandoned structures
		tailed Bat				
18	Small	Desert	Paraechinus	Native	Least	Likely – found in dry,
	Mammal	Hedgehog	aethiopicus		Concern	open areas
19	Small	Long-eared	Hemiechinus	Native	Least	Likely – nocturnal,
	Mammal	Hedgehog	auritus		Concern	occasionally sighted
20	Small	Short-	Cynopterus	Native	Least	Documented –
	Mammal	nosed	sphinx		Concern	frugivorous bat, roosts
		Fruit Bat				in trees

Avifauna (Birds)

The Changa Manga Forest is regarded as one of the most significant avian habitats in central Punjab. Over 200 bird species have been recorded, comprising both resident and migratory populations. Resident species include the rose-ringed parakeet (*Psittacula krameri*), common myna (*Acridotheres tristis*), redvented bulbul (*Pycnonotus cafer*), and black drongo (*Dicrurus macrocercus*), which are abundant yearround. During the winter migration season, the forest serves as a critical stopover site for various migratory birds originating from Central Asia and Siberia. Species such as the rosy starling (*Pastor roseus*), blue-

throat (Luscinia svecica), Indian roller (Coracias benghalensis), and black kite (Milvus migrans) are seasonally abundant. The nearby irrigation canals and artificial lakes provide essential water and feeding resources for wading birds like little egret (Egretta garzetta) and cattle egret (Bubulcus ibis). The high avian diversity underscores the forest's importance as a bird refuge and breeding habitat, especially within an agricultural landscape. However, deforestation, pesticide exposure, and tourism-related disturbances continue to affect nesting and foraging behaviors (Sadia et al., 2024).

Table 6: Avifauna of Changa Manga Forest, Punjab, Pakistan.

Sr	Common	Scientific Name	Resident/Migratory	IUCN	Notes on Occurrence in
.No	Name	Bololiulio Ivaliio	Status	Status	Changa Manga
1	Indian Peafowl	Pavo cristatus	Resident	Least Concern	Commonly seen in forest clearings
2	Black Drongo	Dicrurus macrocercus	Resident	Least Concern	Abundant in open areas
3	House Crow	Corvus splendens	Resident	Least Concern	Common near human settlements
4	Common Myna	Acridotheres tristis	Resident	Least Concern	Very common and adaptive
5	Red-vented Bulbul	Pycnonotus cafer	Resident	Least Concern	Common in shrubs and edges
6	Jungle Babbler	Turdoides striata	Resident	Least Concern	Frequently seen in groups
7	Green Bee- eater	Merops orientalis	Resident	Least Concern	Common in grasslands
8	Rose-ringed Parakeet	Psittacula krameri	Resident	Least Concern	Abundant; cavity nester
9	White- throated Kingfisher	Halcyon smyrnensis	Resident	Least Concern	Found near water bodies
10	Indian Roller	Coracias benghalensis	Resident	Least Concern	Perches on electric wires
11	Eurasian Collared Dove	Streptopelia decaocto	Resident	Least Concern	Very common species
12	Laughing Dove	Spilopelia senegalensis	Resident	Least Concern	Common in all habitats
13	Cattle Egret	Bubulcus ibis	Resident	Least	Abundant; feeds with

				Concern	livestock
14	Little Egret	Egretta garzetta	Resident	Least Concern	Found near ponds and canals
15	Black Kite	Milvus migrans	Resident	Least Concern	Common scavenger
16	Shikra	Accipiter badius	Resident	Least Concern	Forest predator
17	Spotted Owlet	Athene brama	Resident	Least Concern	Common nocturnal bird
18	Barn Owl	Tyto alba	Resident	Least Concern	Found near villages
19	Indian Grey Hornbill	Ocyceros birostris	Resident	Least Concern	Breeds in forest cavities
20	Rufous Treepie	Dendrocitta vagabunda	Resident	Least Concern	Common in canopy
21	White Wagtail	Motacilla alba	Winter Migrant	Least Concern	Seen in open fields in winter
22	Grey Wagtail	Motacilla cinerea	Winter Migrant	Least Concern	Occasional visitor
23	Common Sandpiper	Actitis hypoleucos	Winter Migrant	Least Concern	Found near canals
24	Barn Swallow	Hirundo rustica	Migratory	Least Concern	Common in summer
25	Red-rumped Swallow	Cecropis daurica	Migratory	Least Concern	Seen during spring
26	Blue Rock Thrush	Monticola solitarius	Winter Migrant	Least Concern	Occasional
27	Black Redstart	Phoenicurus ochruros	Winter Migrant	Least Concern	Common in open fields
28	Common Chiffchaff	Phylloscopus collybita	Winter Migrant	Least Concern	Small migratory warbler
29	Eurasian Hoopoe	Upupa epops	Migratory	Least Concern	Common during migration
30	Pied Kingfisher	Ceryle rudis	Resident	Least Concern	Seen along water channels
31	Grey Francolin	Francolinus pondicerianus	Resident	Least Concern	Common ground-dweller
32	Common Quail	Coturnix coturnix	Migratory	Least Concern	Seasonal visitor
33	Indian Paradise Flycatcher	Terpsiphone paradisi	Summer Migrant	Least Concern	Breeds in forest canopy
34	Common Hawk Cuckoo	Hierococcyx varius	Summer Migrant	Least Concern	Known as "brain fever bird"
35	Yellow-footed Green Pigeon	Treron phoenicoptera	Resident	Least Concern	Seen in fruiting trees
36	Greater Coucal	Centropus sinensis	Resident	Least Concern	Common in dense vegetation
37	Purple Sunbird	Cinnyris asiaticus	Resident	Least Concern	Abundant nectar feeder
38	Indian Robin	Saxicoloides fulicatus	Resident	Least Concern	Common near forest edges
39	Common Tailorbird	Orthotomus sutorius	Resident	Least Concern	Common among shrubs
40	Black-headed Ibis	Threskiornis melanocephalus	Resident	Near Threatened	Occasionally seen in wetlands

Insects and pollinators

Insects and pollinators of the Changa Manga Forest play a vital role in maintaining ecosystem balance and biodiversity. They facilitate pollination of native flora, ensuring plant reproduction and genetic diversity. Species such as bees, butterflies, and beetles contribute significantly to forest regeneration and productivity. Decomposers like ants, flies, and beetles recycle nutrients, enhancing soil fertility. Additionally, predatory insects help control pest populations naturally. These interactions support the forest's ecological stability, sustain food webs, and provide essential ecosystem services for both wildlife and human communities dependent on the forest's resources for ecological and economic well-being (Masood et al., 2024).

Figure No. 6: Overview of Insect in Changa Manga Forest, Punjab, Pakistan.

Table 7: Insects and Pollinators of Changa Manga Forest, Punjab, Pakistan.

Sr. No	Common Name	Scientific Name	Resident/Migratory Status	IUCN Status	Notes on Occurrence in Changa Manga
1	Honey Bee	Apis cerana indica	Resident	Not Evaluated	Common pollinator in forest flora
2	Giant Honey Bee	Apis dorsata	Resident	Not Evaluated	Large hives on tall trees
3	Little Honey Bee	Apis florea	Resident	Not Evaluated	Builds small exposed combs
4	Carpenter Bee	Xylocopa fenestrata	Resident	Not Evaluated	Pollinates woody plants
5	Bumblebee	Bombus haemorrhoidalis	Resident	Least Concern	Occasional visitor, seasonal
6	Green Lacewing	Chrysoperla carnea	Resident	Not Evaluated	Important biological control agent
7	Asian Lady Beetle	Harmonia axyridis	Resident	Not Evaluated	Predates on aphids
8	Red Cotton Bug	Dysdercus cingulatus	Resident	Not Evaluated	Common on silk-cotton trees
9	Blue Tiger Butterfly	Tirumala limniace	Resident	Not Evaluated	Common in flowering season
10	Common Mormon	Papilio polytes	Resident	Not Evaluated	Frequent in forest gardens
11	Common Lime Butterfly	Papilio demoleus	Resident	Not Evaluated	Abundant; citrus feeder
12	Plain Tiger Butterfly	Danaus chrysippus	Resident	Not Evaluated	Seen year-round
13	Common Jezebel	Delias eucharis	Resident	Not Evaluated	Active during flowering periods

14	Common Grass Yellow	Eurema hecabe	Resident	Not Evaluated	Common nectar feeder
15	Common Evening Brown	Melanitis leda	Resident	Not Evaluated	Found in shaded areas
16	Striped Tiger Butterfly	Danaus genutia	Resident	Not Evaluated	Prefers open grassy zones
17	Common Crow Butterfly	Euploea core	Resident	Not Evaluated	Occurs throughout forest trails
18	Crimson Rose Butterfly	Pachliopta hector	Resident	Not Evaluated	Attractive and locally common
19	Common Pierrot	Castalius rosimon	Resident	Not Evaluated	Small butterfly, common
20	Dragonfly (Common Darter)	Sympetrum striolatum	Resident	Not Evaluated	Found near forest ponds
21	Globe Skimmer Dragonfly	Pantala flavescens	Migratory	Not Evaluated	Seasonally migratory species
22	Damselfly (Blue Sprite)	Pseudagrion microcephalum	Resident	Not Evaluated	Found along wet areas
23	Praying Mantis	Hierodula tenuidentata	Resident	Not Evaluated	Common predator of insects
24	Termite	Odontotermes obesus	Resident	Not Evaluated	Found in decaying logs
25	Ant (Weaver Ant)	Oecophylla smaragdina	Resident	Not Evaluated	Builds leaf nests
26	Black Ant	Camponotus compressus	Resident	Not Evaluated	Common ground species
27	Honey Ant	Myrmecocystus mimicus	Resident	Not Evaluated	Seen near forest roots
28	Fruit Fly	Bactrocera dorsalis	Resident	Not Evaluated	Associated with fruiting plants
29	House Fly	Musca domestica	Resident	Not Evaluated	Abundant near human areas
30	Mosquito	Culex pipiens	Resident	Not Evaluated	Found near stagnant water
31	Black Soldier Fly	Hermetia illucens	Resident	Not Evaluated	Important decomposer
32	Green Bottle Fly	Lucilia sericata	Resident	Not Evaluated	Common decomposer
33	Dung Beetle	Onthophagus gazella	Resident	Not Evaluated	Vital for nutrient recycling
34	Rhinoceros Beetle	Oryctes rhinoceros	Resident	Not Evaluated	Found in decaying wood
35	Longhorn Beetle	Anoplophora chinensis	Resident	Not Evaluated	Wood-boring beetle
36	Firefly	Lampyris noctiluca	Resident	Not Evaluated	Active at night
37	Leaf Beetle	Chrysolina fastuosa	Resident	Not Evaluated	Feeds on plant foliage
38	Wasp	Vespa tropica	Resident	Not Evaluated	Aggressive; builds paper nests
39	Mud Dauber Wasp	Sceliphron formosum	Resident	Not Evaluated	Builds mud nests
40	Green Butterfly	Graphium agamemnon	Resident	Not Evaluated	Found near flowering shrubs

Herpetofauna (Reptiles and Amphibians)

The herpetofaunal diversity of Changa Manga is moderately rich, representing a variety of reptiles and amphibians adapted to the semi-arid environment. Common reptilian species include the Indian cobra (Naja naja), Russell's viper (Daboia russelii), Oriental garden lizard (Calotes versicolor), house gecko (Hemidactylus flaviviridis), and skinks (Eutropis carinata). Amphibians such as the Indian bullfrog (Hoplobatrachus tigerinus) and common toad

(Duttaphrynus melanostictus) are observed in moist and irrigated areas, particularly near canals and ponds. These species contribute to insect population control and soil aeration, playing a vital role in the forest's ecological balance. However, limited herpetological research has been conducted in the region, and many amphibian populations remain understudied and potentially threatened by pesticide runoff, habitat alteration, and water pollution (Siddique et al., 2023).

Table 8: Herpetofauna (Reptiles and Amphibians) of Changa Manga Forest, Puniab, Pakistan.

INTE O. L		puies and Ampinblai 	ns) of Changa Manga l		·
Sr.No	Common Name	Scientific Name	Resident/Migratory Status	IUCN Status	Notes on Occurrence in Changa Manga
1	Indian Cobra	Naja naja	Resident	Least Concern	Common; found in forest undergrowth
2	Common Krait	Bungarus caeruleus	Resident	Least Concern	Nocturnal; occurs in leaf litter
3	Russell's Viper	Daboia russelii	Resident	Least Concern	Rare but potentially present
4	Saw-scaled Viper	Echis carinatus	Resident	Least Concern	Found in dry forest edges
5	Rat Snake	Ptyas mucosa	Resident	Least Concern	Common non-venomous snake
6	Checkered Keelback	Fowlea piscator	Resident	Least Concern	Found near ponds and canals
7	Common Sand Boa	Eryx conicus	Resident	Least Concern	Prefers sandy patches and burrows
8	Indian Rock Python	Python molurus	Resident	Near Threatened	Rare; sighted in dense vegetation
9	Indian Monitor Lizard	Varanus bengalensis	Resident	Least Concern	Common in open forest and fields
10	Garden Lizard	Calotes versicolor	Resident	Least Concern	Common arboreal species
11	Oriental Skink	Eutropis carinata	Resident	Least Concern	Common on forest floor
12	Indian House Gecko	Hemidactylus frenatus	Resident	Least Concern	Common near forest quarters
13	Brook's Gecko	Hemidactylus brookii	Resident	Least Concern	Found under tree bark and rocks
14	Banded Gecko	Cyrtodactylus fasciolatus	Resident	Least Concern	Prefers moist forest habitats
15	Indian Garden Gecko	Hemidactylus flaviviridis	Resident	Least Concern	Found near buildings and lights
16	Common Toad	Duttaphrynus melanostictus	Resident	Least Concern	Common after rainfall
17	Indus Valley Toad	Duttaphrynus stomaticus	Resident	Least Concern	Common amphibian species
18	Skittering Frog	Euphlyctis cyanophlyctis	Resident	Least Concern	Found in water bodies
19	Indian Bullfrog	Hoplobatrachus tigerinus	Resident	Least Concern	Abundant during monsoon
20	Indus Frog	Fejervarya limnocharis	Resident	Least Concern	Common near irrigation channels
21	Painted Frog	Kaloula pulchra	Resident	Least	Burrows underground

				Concern	during dry season
22	Tree Frog	Polypedates maculatus	Resident	Least Concern	Breeds near water bodies
23	Skink	Lygosoma punctata	Resident	Least Concern	Common in dry leaf litter
24	Toad-headed Agama	Phrynocephalus maculatus	Resident	Least Concern	Found in drier parts of forest
25	Common Garden Snake	Lycodon aulicus	Resident	Least Concern	Nocturnal; feeds on small vertebrates
26	Banded Kukri Snake	Oligodon arnensis	Resident	Least Concern	Rare; recorded in nearby districts
27	Smooth Snake	Coronella brachyura	Resident	Least Concern	Rarely observed, cryptic species
28	Indian Chameleon	Chamaeleo zeylanicus	Resident	Least Concern	Occasionally seen on shrubs
29	Indian Tent Turtle	Pangshura tentoria	Resident	Near Threatened	Found in canals and ponds
30	Softshell Turtle	Nilssonia gangetica	Resident	Vulnerable	Occasionally seen in nearby rivers
31	Common Garden Frog	Sphaerotheca breviceps	Resident	Least Concern	Found near moist forest edges
32	Indian Flap- shelled Turtle	Lissemys punctata	Resident	Least Concern	Found in wetland habitats
33	Striped Keelback	Amphiesma stolatum	Resident	Least Concern	Common water snake
34	Tree Lizard	Calotes versicolor farooqi	Resident	Not Evaluated	Local subspecies, common
35	Indian Skittering Frog	Euphlyctis cyanophlyctis	Resident	Least Concern	Active in rainy season
36	Marsh Frog	Fejervarya syhadrensis	Resident	Least Concern	Common near marshy areas
37	Common Indian Frog	Minervarya pierrei	Resident	Least Concern	Found near small streams
38	Banded Krait	Bungarus fasciatus	Resident	Least Concern	Rare; found in moist zones
39	Roofed Turtle	Kachuga tecta	Resident	Least Concern	Observed near irrigation ponds
40	Indian Pond Turtle	Melanochelys trijuga	Resident	Near Threatened	Found in water channels

Invertebrates

Invertebrate diversity within Changa Manga has received less scientific attention but represents a significant component of the forest's ecosystem. Insect surveys have reported abundant pollinators, such as honeybees (*Apis dorsata* and *Apis florea*), butterflies (family Nymphalidae and Pieridae), and hoverflies (Syrphidae), which contribute to the pollination of flowering plants. Soil macrofauna, including termites,

earthworms, and beetles, aid in organic matter decomposition and nutrient recycling. Additionally, the forest harbors several species of dragonflies and damselflies, indicating the ecological health of wetland zones. However, the increased use of chemical pesticides in surrounding agricultural fields poses a growing threat to invertebrate diversity, with potential cascading effects on higher trophic levels (Hemmatzadehd et al., n.d.).

Table 9: Invertebrates (Pollinators, Soil Fauna, and Ecologically or Pest Significant Insects) of Changa Manga

Forest, Punjab, Pakistan

Sr. No	Common Name	Scientific Name	Functional Group	IUCN Status	Ecological Role / Significance	Notes on Occurrence in Changa Manga
1	Honeybee	Apis cerana indica	Pollinator	Not Evaluated	Vital pollinator for forest flora and nearby crops	Common; nests in tree cavities and old trunks.
2	Rock Honeybee	Apis dorsata	Pollinator	Not Evaluated	Major wild pollinator; supports forest regeneration	Found in forest canopies; threatened by honey collection.
3	Bumblebee	Bombus haemorrhoidalis	Pollinator	Least Concern	Important pollinator for wildflowers and shrubs	Rare; recorded seasonally in open forest areas.
4	Butterfly (Lemon Pansy)	Junonia lemonias	Pollinator	Not Evaluated	Pollination and aesthetic biodiversity value	Common in forest clearings and along trails.
5	Common Mormon Butterfly	Papilio polytes	Pollinator	Not Evaluated	Pollinates flowering plants and supports biodiversity	Regularly observed; depends on citrus species for larvae.
6	Dragonfly	Orthetrum sabina	Predator (control insect)	Not Evaluated	Controls mosquito and small insect populations	Common near ponds and canals.
7	Damselfly	Ischnura aurora	Predator	Not Evaluated	Indicator of healthy freshwater systems	Found near moist habitats and wetlands.
8	Termite	Odontotermes obesus	Soil fauna/ decomposer	Not Evaluated	Decomposes organic matter, improves soil aeration	Common in decaying wood and soil mounds.
9	Ant (Black Carpenter Ant)	Camponotus compressus	Soil fauna/ seed disperser	Not Evaluated	Enhances soil turnover and nutrient cycling	Common in both open and shaded forest areas.
10	Dung Beetle	Onthophagus taurus	Decomposer	Not Evaluated	Recycles animal waste; enhances soil fertility	Common; active during moist seasons.
11	Ladybird Beetle	Coccinella septempunctata	Predator (biocontrol agent)	Not Evaluated	Controls aphid populations on vegetation	Frequently observed on tree foliage.
12	Praying Mantis	Hierodula patellifera	Predator	Not Evaluated	Controls pest insects; indicator of balanced ecosystem	Common in shrub layers and grasslands.
13	Grasshopper	Oxya hyla hyla	Herbivore	Not Evaluated	Part of food web; prey for birds and reptiles	Abundant in grassy patches; occasional pest species.
14	Silk Moth	Antheraea mylitta	Pollinator/ larval host	Not Evaluated	Supports silk production and pollination	Rare; presence linked with host tree abundance.
15	Honey Ant	Myrmecocystus	Soil fauna	Not Evaluated	Soil aeration,	Uncommon;

		mimicus			organic decomposition	reported in dry soil areas.
16	Termite (White Ant)	Microtermes obesi	Decomposer	Not Evaluated	Breaks down lignin-rich plant debris	Common across plantation zones.
17	Housefly	Musca domestica	Decomposer/ pest	Not Evaluated	Organic decomposition; can spread pathogens	Abundant near human settlements and waste areas.
18	Mosquito	Culex quinquefasciatus	Pest	Not Evaluated	Vector of diseases; part of aquatic food chain	Common near standing water bodies.
19	Earthworm	Eisenia fetida	Soil fauna/ decomposer	Not Evaluated	Enhances soil fertility through bioturbation	Found in moist, humus-rich soils; indicator of soil health.
20	Carpenter Bee	Xylocopa violacea	Pollinator	Not Evaluated	Pollinates large flowers and legumes	Found in decaying wood; important for tree pollination.

Aquatic and Riverine Species

Although Changa Manga is primarily a terrestrial forest, its canal-fed irrigation system and artificial lakes support diverse aquatic species. Common freshwater fish include Rohu (*Labeo rohita*), Catla (*Catla catla*), and Common carp (*Cyprinus carpio*), which are occasionally cultivated for local fisheries.

Aquatic insects and amphibians also thrive in these habitats, contributing to local food webs and enhancing ecological productivity. The presence of wetland-associated bird species further emphasizes the ecological significance of these man-made aquatic systems (NASIR et al., n.d.).

Table 10: Aquatic and Riverine Species of Changa Manga Forest, Punjab, Pakistan.

Sr. No	Common Name	Scientific Name	Resident/Migratory Status	IUCN Status	Notes on Occurrence in Changa Manga
1	Indian Rohu	Labeo rohita	Resident	Least Concern (LC)	Commonly found in nearby irrigation channels and ponds.
2	Catla	Catla catla	Resident	Least Concern (LC)	Stocked in artificial lakes; used for fish farming.
3	Mrigal Carp	Cirrhinus mrigala	Resident	Least Concern (LC)	Common in slow-moving freshwater habitats.
4	Snakehead Murrel	Channa striata	Resident	Least Concern (LC)	Found in ponds and waterlogged areas; predator species.
5	Walking Catfish	Clarias batrachus	Resident	Least Concern (LC)	Survives in low-oxygen waters; common in wetlands.
6	Freshwater Eel	Anguilla bengalensis bengalensis	Migratory	Near Threatened (NT)	Occasionally seen in irrigation canals connected to the forest.
7	Common Carp	Cyprinus carpio	Resident	Vulnerable (VU)	Introduced species; widely distributed in fish ponds.
8	Striped Dwarf Catfish	Mystus vittatus	Resident	Least Concern (LC)	Found in smaller streams and vegetated ponds.
9	Spotted Snakehead	Channa punctata	Resident	Least Concern (LC)	Abundant in ditches and marshy areas.

10	Indian Pond Mussel	Lamellidens marginalis	Resident	Not Evaluated (NE)	Common in muddy substrates of ponds.
11	Freshwater Prawn	Macrobrachium rosenbergii	Resident	Least Concern (LC)	Found in freshwater canals and ponds.
12	Asian Swamp Eel	Monopterus albus	Resident	Least Concern (LC)	Burrows into muddy beds; seen in waterlogged sites.
13	Indian River Turtle	Pangshura tecta	Resident	Near Threatened (NT)	Found near streams and forest ponds; protected species.
14	Softshell Turtle	Nilssonia gangetica	Resident	Vulnerable (VU)	Found in canals and slow-flowing water; declining due to habitat loss.
15	Indian Bullfrog	Hoplobatrachus tigerinus	Resident	Least Concern (LC)	Common after monsoon; found near ponds and grassy wetlands.
16	Skittering Frog	Euphlyctis cyanophlyctis	Resident	Least Concern (LC)	Very common near forest water bodies.
17	Indian Tree Frog	Polypedates maculatus	Resident	Least Concern (LC)	Found around vegetation near water; calls during rainy season.
18	Asian Common Toad	Duttaphrynus melanostictus	Resident	Least Concern (LC)	Common in moist forest edges; active after rainfall.
19	Indian Flap- shelled Turtle	Lissemys punctata	Resident	Least Concern (LC)	Found in small ponds and canals; adaptable to altered environments.

Species of Conservation Concern

Several species found in Changa Manga are listed under the IUCN Red List as near-threatened or pangolin (Manis vulnerable. The Indian crassicaudata), occasionally reported from the region, is endangered due to illegal poaching and habitat loss. Bird species such as the black kite (Milvus migrans) and Indian peafowl (Pavo cristatus) are locally protected under the Punjab Wildlife (Protection, Preservation, Conservation, and Management) Act of 1974. The loss of connectivity between Changa Manga and other forested areas has restricted gene flow for several terrestrial species, emphasizing the need for wildlife corridors and protected area linkages. Conservation interventions focusing on habitat restoration, anti-poaching measures, and community awareness programs are essential for maintaining faunal diversity and ensuring the long-term ecological resilience of this historic forest ecosystem (Sharif et al., 2022b).

Mushroom Species of Changa Manga Forest

The mushroom species of Changa Manga Forest hold significant ecological, economic, and medicinal importance. Ecologically, they act as decomposers, recycling nutrients and maintaining soil fertility, which supports the forest's overall biodiversity. Certain species form symbiotic relationships with trees, enhancing forest health and resilience. Economically, edible and medicinal mushrooms offer potential for local livelihoods and sustainable harvesting. Medicinal species contain bioactive compounds with antimicrobial, antioxidant, and antiinflammatory properties. contributing pharmaceutical research. Studying these fungi also helps document biodiversity, monitor environmental changes. and inform conservation strategies, highlighting Changa Manga Forest as a critical habitat for fungal diversity in Pakistan (Abrar et al., 2020).

Figure No:7. Overview of Mushroom Species in Changa Manga Forest, Punjab, Pakistan.

Table 11: Mushroom Species in Changa Manga Forest, Punjab, Pakistan.

Sr. No	Species Name	Genus	Key Features / Description	Habitat / Location
1	Leucoagaricus rosuliformis	Leucoagaricus	Rosette-like central disc, dense squamules scattered toward margins; confirmed by molecular phylogeny	Changa Manga Forest
2	Agaricus punjabensis	Agaricus	Pileus with fissured, irregular patterns; dark brownish-grey squamules; morphologically variable	Changa Manga Forest, Lahore
3	Ganoderma multipileum	Ganoderma	Polypore species; contributes to fungal diversity	Changa Manga Forest, Lahore
4	Tomophagus cattienensis	Tomophagus	Adds to regional fungal biodiversity	Changa Manga Forest, Lahore
5	Podoscypha petalodes	Podoscypha	Found under Morus sp.; identified via morpho- anatomical and phylogenetic analysis	Changa Manga Forest
6	Limacella species (new)	Limacella	Newly described species contributing to local fungal diversity	Changa Manga Forest
7	Lepiota species (new)	Lepiota	New species and new record of genus Lepiota	Changa Manga Forest

5. ECOSYSTEM FUNCTIONS AND SERVICES

Provisioning Services

The Changa Manga Forest was originally established for its provisioning role, supplying timber and fuelwood to meet the industrial and infrastructural needs of the British colonial administration. Dominant tree species such as *Dalbergia sissoo* (Shisham), *Acacia nilotica* (Kikar), and *Eucalyptus camaldulensis* continue to provide valuable timber, poles, and fuelwood to local and regional markets. Additionally, the forest contributes to non-timber forest products (NTFPs) such as fodder, medicinal plants, resins, and honey, supporting local livelihoods.

In recent decades, sustainable harvesting practices have been encouraged to reduce overexploitation and maintain ecosystem productivity (Sadia et al., 2024).

Regulating Services

The forest plays a crucial role in regulating ecosystem processes, particularly in carbon sequestration and climate regulation. Studies indicate that the dense canopy and layered vegetation structure significantly contribute to carbon storage in both biomass and soil, helping mitigate greenhouse gas emissions. Furthermore, Changa Manga acts as a microclimatic buffer, lowering local temperatures and increasing

humidity compared to surrounding agricultural landscapes. Its root systems and leaf litter cover also contribute to erosion control, while irrigation-fed hydrological networks assist in groundwater recharge and maintaining soil moisture. These regulating functions are critical for the ecological resilience of the Punjab region, which faces pressures from deforestation and agricultural expansion(Waheed, Haq, et al., 2025).

Supporting Services

As one of the largest hand-planted forests, Changa Manga offers extensive supporting ecosystem services. The continuous decomposition of organic matter enhances soil fertility and nutrient cycling, fostering a balanced forest floor ecosystem. The forest supports pollination services, providing habitat for numerous insect pollinators that benefit both wild and cultivated plant species. Moreover, it serves as a biodiversity reservoir, maintaining ecological processes that sustain flora and fauna diversity. The intricate interactions among trees. vegetation, and soil biota underline its importance as a self-sustaining ecological system despite being manmade(Sharif et al., 2022b).

Cultural and Recreational Services

Changa Manga holds significant cultural, educational, and recreational value. It is a popular eco-tourism site, attracting visitors to its wildlife park, boating lake, and picnic areas. The forest serves as a living classroom for students. researchers. conservationists studying afforestation, biodiversity, and sustainable forest management. Locally, it contributes to the social and cultural identity of the region, being a source of pride and livelihood for nearby communities. Such cultural services reinforce the social-ecological importance of the forest beyond its tangible economic benefits(Hag, Khoja, et al., 2024).

Valuation Studies and Economic Insights

While comprehensive economic valuation studies on Changa Manga's ecosystem services remain limited, some reports estimate substantial economic returns from timber and ecotourism. Proxy estimates from regional forestry models suggest that carbon sequestration and recreational services collectively contribute millions of Pakistani rupees annually if appropriately monetized. However, there remains a need for formal ecosystem service valuation frameworks to guide sustainable management, ensure equitable benefit sharing, and integrate ecological functions into regional development planning. Changa Manga provides a multifaceted suite of ecosystem services that sustain both environmental health and human well-being. Protecting and managing these services holistically is essential to maintain the forest's long-term ecological and socio-economic significance (ur Rahman et al., 2022).

6. LANDSCAPE CONTEXT, CONNECTIVITY, AND ECOLOGICAL ROLES

Changa Manga as a Habitat Island

The Changa Manga Forest, despite its large size and historical significance, now functions as a habitat within an extensively agricultural urbanized landscape of central Punjab. Surrounded by croplands and human settlements, the forest is increasingly isolated from other natural or seminatural habitats, which affects ecological interactions and wildlife movement. This fragmentation has led to limited dispersal opportunities for many forestdependent species, particularly large mammals and specialist birds. As a result, the forest may serve as a sink habitat—supporting species populations that cannot sustain themselves independently due to restricted gene flow and small population sizes. However, for adaptable and generalist species, Changa Manga still provides a source of refuge and breeding ground, highlighting its dual ecological role within the fragmented landscape (Ali et al., n.d.).

Connectivity with Other Forest Patches

Historically, Changa Manga was part of a broader network of riparian and plantation forests extending across Punjab. However, with increasing agricultural expansion and infrastructure development, landscape connectivity has been severely reduced. Presently, the nearest forested areas such as Balloki, Kasur, and Rakh Jhok forests are separated by several kilometers of non-forested land, restricting natural gene flow and species migration. Limited corridors exist along irrigation canals and small vegetated patches, which may facilitate partial movement of birds, reptiles, and small mammals. The absence of continuous habitat corridors poses challenges for maintaining genetic diversity, particularly among resident fauna with small home ranges. Restoration of green belts, riparian vegetation, and canal-side plantations could significantly enhance ecological connectivity and promote metapopulation stability across the regional landscape(Sial, 2024).

Role in Regional Biodiversity Networks

Despite its isolation, Changa Manga remains an ecologically critical node in Punjab's biodiversity network. It serves as a stepping stone habitat for migratory birds traveling across the Indo-Gangetic plains, offering foraging and nesting sites during seasonal movements. The forest's diverse plant and animal communities contribute to maintaining regional ecological balance, supporting ecosystem services such as pollination, seed dispersal, and pest control that extend beyond its boundaries. Moreover, the forest acts as a carbon and nutrient reservoir,

indirectly benefiting surrounding agricultural ecosystems through microclimatic stabilization and soil conservation. Given its strategic location and biological richness, Changa Manga has the potential to play a central role in Punjab's ecological restoration initiatives. Integrating the forest into a broader conservation landscape through the establishment of wildlife corridors, buffer zones, and communitymanaged reserves could transform it from an isolated habitat island into a functional component of a regional ecological network. Such landscape-level management would enhance biodiversity resilience, genetic exchange, and ecosystem sustainability across Pakistan's most densely populated province (Niazi & Ghafoor, 2023).

7. THREATS AND STRESSORS

Historical and Contemporary Anthropogenic Pressures

Since its establishment in 1866, the Changa Manga Forest has experienced a long history anthropogenic exploitation. Initially managed for fuelwood and railway timber production, intensive and unsustainable harvesting practices during the colonial and post-colonial periods led to significant degradation of native vegetation. In recent decades, pressures from illegal logging, overgrazing, and excessive fuelwood collection have continued to stress the ecosystem. Encroachment by nearby settlements and infrastructure development further contribute to habitat loss and disturbance, reducing the forest's ecological integrity and resilience. Despite reforestation and afforestation efforts by the Punjab Forest Department, unchecked human activity remains a persistent challenge (Yasmeen & Asif, 2022).

Agricultural Expansion and Fragmentation

Changa Manga lies within one of Pakistan's most intensively cultivated regions. Continuous agricultural expansion, driven by population growth and economic dependence on farming, has resulted in landscape fragmentation and the loss of buffer zones surrounding the forest. This isolation not only restricts wildlife movement but also increases edge effects, such as higher exposure to pollutants, noise, and invasive species from adjacent farmlands. Irrigation canals and roads, while beneficial for agriculture, have further divided the landscape, altering natural hydrology and fragmenting habitat continuity(Mumtaz et al., 2021).

Invasive Species and Pest Outbreaks

The introduction of non-native tree species, particularly *Eucalyptus camaldulensis* and *Prosopis juliflora*, has altered the forest's ecological composition and soil nutrient balance. These species often outcompete native flora, suppress regeneration,

and modify hydrological regimes through high water uptake. Additionally, pest outbreaks such as defoliating insects and fungal infections have periodically affected both planted and natural vegetation, leading to declines in forest productivity and biodiversity. Limited pest management capacity exacerbates these issues, threatening long-term forest sustainability(Khan et al., 2020).

Fire Regimes and Accidental/Intentional Fires

Forest fires, both accidental and intentional, pose recurrent threats to Changa Manga's vegetation and wildlife. Dry seasons, coupled with high temperatures and human negligence, increase fire frequency, especially near picnic areas and plantation blocks. Some fires are deliberately set to clear undergrowth for grazing or illegal wood extraction, resulting in severe habitat loss, soil degradation, and the destruction of nesting sites. Inadequate surveillance systems and limited firefighting resources hinder effective response, emphasizing the need for proactive fire risk management plans (Abid et al., 2024).

Climate Change Impacts and Projections

Climate change poses an escalating threat to the ecological stability of Changa Manga. temperatures, prolonged droughts, and irregular monsoon patterns are altering soil moisture dynamics and increasing tree mortality rates. Shifts in species distribution and the potential loss of moisturedependent flora could disrupt food webs and ecosystem services. Moreover, extreme weather events, including heatwaves and windstorms, heighten the vulnerability of plantation stands. Longterm projections suggest potential declines in forest cover and carbon storage capacity if adaptive management strategies are not implemented (Haq, Lone, et al., 2024).

Socioeconomic Drivers and Governance Challenges

pressures, Socioeconomic including poverty, population growth, and dependence on forest resources, remain core challenges in the sustainable management of Changa Manga. Local communities rely heavily on the forest for fuelwood, grazing, and small-scale forest products, often without formal practices. regulation or sustainable Weak institutional inconsistent policy governance, enforcement. and insufficient community participation further exacerbate degradation. Although conservation initiatives exist. effectiveness is often undermined by limited funding, lack of awareness, and overlapping jurisdiction among governmental agencies.

Changa Manga faces multifaceted ecological and socioeconomic threats that compromise its biodiversity, ecosystem services, and resilience.

Addressing these stressors requires a multistakeholder approach, integrating scientific research, adaptive management, community involvement, and policy reform to safeguard the long-term sustainability of one of the world's oldest handplanted forests (Hena et al., 2021).

8. MANAGEMENT HISTORY, GOVERNANCE, AND CONSERVATION MEASURES

Past Management Objectives

The management history of Changa Manga Forest reflects shifting priorities from colonial-era exploitation to contemporary conservation and recreation. Initially established in 1866 under British colonial administration, the forest's primary objective was the production of fuelwood and timber to support the North-Western Railway network, which required vast quantities of wood for steam locomotives. The forest was managed under a plantation forestry model, focusing on fast-growing species such as Dalbergia sissoo (Shisham) and Acacia nilotica (Kikar). During the mid-20th century, management strategy gradually diversified to include silvicultural improvements, irrigation-based afforestation, and controlled harvesting. By the late 1900s, with rising environmental awareness, the focus began to shift towards recreation, biodiversity conservation, and ecosystem restoration, aligning with global sustainability principles (Arshad et al., 2022).

Current Management Institutions

At present, the Punjab Forest Department (PFD) serves as the primary governing authority responsible for the management, protection, and restoration of Changa Manga. The forest is administered under the Lahore Forest Division, which oversees operations related to plantation upkeep, wildlife conservation, and tourism management. Additional stakeholders include the Punjab Wildlife and Parks Department, responsible for the Changa Manga Wildlife Park, and local community representatives engaged through social forestry initiatives. Collaborative input is also provided by academic institutions, non-governmental organizations (NGOs), and environmental research groups working on biodiversity monitoring, climate adaptation, and reforestation planning (Rasib, 2021).

Conservation Initiatives and Restoration Projects

Over the past two decades, a number of conservation and restoration projects have been initiated to address degradation and biodiversity loss. The Punjab Forest Department's afforestation programs, supported by the Ten Billion Tree Tsunami Programme (TBTTP) and Green Pakistan Initiative, have focused on replanting native species, rehabilitating degraded plots, and enhancing forest cover. The Changa Manga Wildlife Park, established

within the forest, serves as both a biodiversity refuge and ecotourism hub, featuring species such as deer, peafowl, and migratory birds. Community-based conservation projects have encouraged local participation in tree planting, protection of saplings, and eco-education campaigns, fostering stewardship among nearby residents. Additionally, GIS-based forest monitoring systems have been introduced to assess vegetation changes and improve transparency in management practices (Bashir et al., 2025).

Community Participation and Co-Management Approaches

Recognizing the importance of local involvement, the PFD has implemented social forestry programs that integrate community participation into management. Under these initiatives, villagers living near Changa Manga are provided incentives such as fuelwood rights, employment in plantation activities, and profit-sharing from timber sales in exchange for their cooperation in protecting the forest from illegal logging and encroachment. However, participation levels remain inconsistent due to socioeconomic and limited challenges awareness. capacity-building programs, including environmental education and livelihood diversification, are essential to ensure sustained community engagement(Ijaz & Haq, 2021).

Successes, Failures, and Management Trade-offs

Management efforts in Changa Manga have achieved notable successes, particularly in forest regeneration, recreational development, and public awareness. The reforestation of degraded areas, improvement of irrigation infrastructure, and establishment wildlife enclosures have all contributed to partial ecological recovery. However, these achievements are counterbalanced by persistent challenges. Overemphasis on fast-growing exotic species has sometimes undermined native biodiversity, while increased tourism has led to littering, soil compaction, and wildlife disturbance. Furthermore, limited interagency coordination, insufficient scientific monitoring, and budgetary constraints continue to hinder effective implementation of sustainable forest management essence. while plans. In Changa management has evolved from resource exploitation to ecological restoration, enduring success will depend balancing economic, ecological, and objectives. Strengthening governance transparency, enhancing community co-management, prioritizing native ecosystem restoration are crucial for ensuring the long-term conservation of one of the world's oldest hand-planted forests (Zia et al., 2022).

9. RESEARCH GAPS AND METHODOLOGICAL RECOMMENDATIONS

Taxonomic Gaps

Despite the ecological significance of Changa Manga, existing research remains heavily biased toward floristic and avian diversity, with limited attention to other taxonomic groups. Invertebrates, particularly pollinators, soil macrofauna, and decomposers, are significantly understudied despite their critical roles in ecosystem functioning. Similarly, herpetofauna (reptiles and amphibians) and microbial communities received minimal scientific mammalian assemblage has been documented only superficially, with scarce information on population dynamics, reproductive behavior, or trophic interactions. Addressing these gaps through comprehensive multi-taxa inventories will provide a holistic understanding of the biodiversity structure and ecological balance(Magsood et al., 2024).

Temporal Gaps

Most existing studies on Changa Manga are short-term and site-specific, often based on one-time surveys or seasonal observations. There is a lack of long-term ecological monitoring to track changes in species composition, vegetation cover, and climate impacts over time. This temporal deficiency limits the ability to assess biodiversity trends, succession processes, and ecosystem resilience. Establishing permanent monitoring plots and implementing longitudinal biodiversity surveys are essential to capture dynamic ecological responses to natural and anthropogenic pressures. Integration of climate and hydrological data into long-term monitoring will further enhance understanding of ecosystem change (Waheed et al., 2024).

Spatial Gaps

Research efforts have been concentrated in easily accessible zones, such as near roads, canals, and recreational areas, leaving interior and edge habitats underexplored. Consequently, spatial biases hinder the accurate representation of forest heterogeneity and species distribution patterns. There is also limited mapping of microhabitats, canopy gradients, and soil diversity, which are vital for understanding habitat-specific biodiversity. Future studies should employ stratified sampling designs that encompass core forest areas, buffer zones, and disturbed edges to achieve more comprehensive spatial coverage(Umar et al., 2023).

Need for Standardized Monitoring Protocols

The lack of standardized sampling and data collection methods poses a major challenge for comparative analyses across studies. To ensure data consistency and reliability, it is recommended to adopt standardized monitoring protocols, such as Fixed-plot vegetation surveys for assessing plant composition, biomass, and regeneration. Camera trap networks for monitoring medium and large mammals, as well as nocturnal activity patterns. Acoustic monitoring systems for birds, bats, and amphibians to capture temporal and seasonal variations. Insect sampling methods (e.g., pitfall traps, light traps, and sweep nets) for evaluating pollinator and decomposer diversity. Such uniform approaches would allow integration ofdata into national and global biodiversity databases. improving conservation decision-making(Bukhari et al., 2025).

Recommended Analytical and Technological Methods

Modern analytical tools and remote technologies offer valuable opportunities bridge to existing methodological gaps. **Future** studies should emphasize, Remote sensing and GIS-based analysis to monitor land-use changes, vegetation cover dynamics, and NDVI (Normalized Difference Vegetation Index) trends. Occupancy modeling and population trend analysis for assessing species distribution, detectability, and habitat suitability under varying disturbance regimes. Molecular and genetic studies to examine gene flow, population connectivity, and the effects of habitat fragmentation. Ecosystem service valuation frameworks, such as InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) and Total Economic Valuation (TEV), to quantify and monetize the forest's ecological and socio-economic addressing contributions. In these temporal, and spatial research deficiencies through standardized, multidisciplinary, and technologyintegrated methodologies is vital for developing a robust ecological knowledge base of Changa Manga. Such an evidence-driven approach will strengthen sustainable conservation planning, guide management practices, and ensure the preservation of historic hand-planted forest for generations (Hena et al., 2021).

10. FUTURE DIRECTIONS AND PRIORITIES

Future research and management of the Changa Manga Forest should focus on strengthening its ecological resilience, biodiversity conservation, and socio-environmental sustainability. Priority research questions include assessing the forest's resilience to climate change, understanding species adaptation mechanisms, and exploring restoration ecology approaches that enhance natural regeneration. Socioecological studies examining local community dependence, perceptions, and participation in forest management are equally vital for developing inclusive conservation strategies. Restoration and adaptive management actions should emphasize native species enrichment, replacing exotic monocultures with ecologically compatible indigenous flora such as

Dalbergia sissoo and Acacia nilotica. Invasive species control, particularly for Eucalyptus and Prosopis juliflora, must be prioritized to restore ecosystem balance. Additionally, promoting community-based forest management through co-management models can ensure both ecological protection and local livelihood benefits. At the policy and planning level, there is an urgent need to integrate forestry practices into broader landscape management frameworks, linking Changa Manga with other green corridors for enhanced connectivity. Strengthening protection. enforcing sustainable harvesting regulations, and developing eco-tourism and livelihood diversification programs will further support conservation goals. Collectively, these actions can transform Changa Manga into a model of sustainable, climate-adaptive forest restoration and governance in Pakistan (Waheed, Arshad, et al., 2025).

11. CONCLUSIONS

The Changa Manga Forest stands as a living testament to successful large-scale afforestation and remains one of the world's most significant handplanted forests. Its rich biodiversity, ecological functions, and socioeconomic value highlight its pivotal role in sustaining environmental health and regional livelihoods in Punjab, Pakistan. Despite extensive anthropogenic pressures and ecological challenges, the forest continues to support diverse flora and fauna, regulate microclimates, sequester carbon, and provide essential ecosystem services. However, escalating threats such as habitat fragmentation, invasive species, and climate change demand immediate and coordinated conservation efforts. Priority actions should include restoration of native vegetation. control of invasive species. establishment ecological corridors, of and enhancement of community-based management frameworks. Simultaneously, long-term monitoring, standardized biodiversity assessments, and ecosystem valuation studies are critical research needs. Protecting and revitalizing Changa Manga is not only ecological imperative but also a national responsibility to preserve Pakistan's natural heritage.

12. REFERENCES

- Abid, I., Zulfiqar, A., Ahmad, T., Sikandar, A., Hussain, S., & Raza, T. (2024). Assessment of Cyclical Spreading and Ecological Extortions to the Avian Species in District Jhang, Punjab, Pakistan. Lahore Garrison University Journal of Life Sciences, 8(1), 134-151.
- 2. Abrar, A., Mughal, T. A., Sarwar, S., Oneeb, M., Malik, K., Saif, S., & Abbas, M. (2020). Aspergillus pakistanicus: microscopic and phylogenetic analysis of a new entomopathogenic fungi isolated from the soil of the Changa Manga

- Forest, Pakistan. Applied Ecology and Environmental Research, 18(3), 3795–3804.
- 3. Abrar, A., Sarwar, S., Abbas, M., Chaudhry, H., Ghani, N., Fatima, A., & Tahir, A. (2021). Identification of locally isolated entomopathogenic Fusarium species from the soil of Changa Manga Forest, Pakistan and evaluation of their larvicidal efficacy against Aedes aegypti. *Brazilian Journal of Biology*, 83, e246230.
- 4. Ahmad, M. (2017). Community based ecological restoration of Changa Manga forest, Punjab, Pakistan. Norwegian University of Life Sciences, As
- Ahmad, S. S., Erum, S., Khan, S. M., Nawaz, M., & Wahid, A. (2014). Exploring the medicinal plants wealth: a traditional medico-botanical knowledge of local communities in Changa Manga Forest, Pakistan. *Middle East Journal of Scientific Research*, 20, 1772–1779.
- 6. Ali, Q., Ashraf, S., Kamran, M., Khan, M. N., & Ul-Allah, S. (n.d.). Land Resources and Agriculture Land Utilization in Pakistan.
- Arshad, F., Waheed, M., Harun, N., Fatima, K., Khan, B. A., Fatima, K., Abbas, Z., Jabeen, S., & Majeed, M. (2022). Indigenous farmer's perception about fodder and foraging species of Semi-arid lowlands of Pakistan: A case study of District Kasur, Pakistan. *Taiwania*, 67(4), 510–523.
- 8. ASAD, M., MUHAMMAD, N. E., SAFDAR, M., CHEEMA, M. J. M., GABRIEL, H. F., ABBAS, U., & SABIR, R. M. (n.d.). SPATIAL FOREST HEALTH MONITORING USING GEOSPATIAL TECHNIQUE: A CASE STUDY OF CHANGA MANGA FOREST, PAKISTAN.
- Aslam, S., Siddiqui, S., Ullah, U., Manzoor, U., Lateef, T., Samreen, N., Nasir, P., Khan, S., Noor, L., & Ghalib, S. A. (2022). Vertebrate wildlife of Pakistan: A review. *Canadian J Pure Appl Sci*, 16(2), 5483-5495.
- 10. Bashir, H., Jabeen, S., & Khalid, A. N. (2025). Earliella scabrosa Representing the First Genus Record in Pakistan, and Pilatotrama ljubarskyi the First Record from Narowal District, Pakistan. *Biology Bulletin*, 52(5), 178.
- 11. Bukhari, S. U. F., Yasmeen, R., Asif, L., Ahmad, M., & Khan, A. (2025). Exploring seasonal behavior, metal exposure, and reproductive dynamics in captive vultures. *Journal of Wildlife and Biodiversity*, 9(2), 188–203.
- 12. Fatima, B., Akram, S., Zaheer-ud-din Khan, M., & Javed, M. (2025). Ethno-medicinal survey of weeds of Changa Manga forest, Pakistan. *Ethnobotany Research and Applications*, 31, 1–21.
- 13. Haq, S. M., Khoja, A. A., Waheed, M., Pieroni, A., Siddiqui, M. H., & Bussmann, R. W. (2024). Plant cultural indicators of forest resources from the Himalayan high mountains: implications for improving agricultural resilience, subsistence, and

- forest restoration. Journal of Ethnobiology and Ethnomedicine, 20(1), 44.
- 14. Haq, S. M., Lone, F. A., Waheed, M., Siddiqui, M. H., Arshad, F., & Bussmann, R. W. (2024). Analyzing anthropogenic determinants of vegetation distributions pattern in high-elevation forests of the Himalayas. *Pak. J. Bot*, *56*(4), 1441–1450.
- 15. Hemmatzadehd, F., Ismate, N., Alif, A., Azamg, S. M., Mustafaa, G., Hussaina, S., Ahmada, U., Ahmadh, A., & Alia, W. (n.d.). *Phylogeography of cliff racer (Platyceps rhodorachis Jan, 1865) from Punjab, Pakistan.*
- Hena, S., Khan, S. U., Rehman, A., Sahar, S., Khalil, I. U., & Luan, J. (2021). Valuing and significance of eco-tourism parks across eastern arid regions of Pakistan. *Environmental Science* and Pollution Research, 28(5), 5900-5913.
- 17. Ijaz, S., & Haq, I. U. (2021). *Dalbergia sissoo:* Biology, ecology and sustainable agroforestry. CRC Press.
- 18. Iqbal, T., Ahmed, N., Akhter, M. M., Hamza, A., & Altaf, S. (n.d.). Exploring the Medicinal Plants from the Mountains of Dhok Talian, Chakwal, Pakistan.
- 19. Iqbal, T., Altaf, S., & Hamza, A. (n.d.). *Pongamia Pinnata Plant Used For Biodiesel Production*.
- 20. KHALIL, H., AYYUB, M., NIAZI, A. R., & AKRAM, A. (2022). A new species of genus Limacella from Changa Manga Forest, Pakistan.
- 21. Khan, N., Fahad, S., Faisal, S., Akbar, A., & Naushad, M. (2020). Socio-economic and medicinal review of Eucalyptus tree in the world. *Available at SSRN 3644215*.
- 22. Maqsood, M. H., Mumtaz, R., & Khan, M. A. (2024). Deforestation detection and reforestation potential due to natural disasters—A case study of floods. *Remote Sensing Applications: Society and Environment*, 34, 101188.
- 23. Masood, M., Hussain, M., Sattar, M. A., Ali, G., Ahmad, S., Imran, F., Ahmad, U., Kalsoom, U., Nawaz, L., & Rahman, H. U. (2024). Distribution and roost preferences of Indian flying fox (Pteropus medius) in District Kasur, Punjab, Pakistan. *Journal of Wildlife and Biodiversity*, 8(4), 173–183.
- 24. Mumtaz, S., Hameed, M., Ahmad, F., Ahmad, M. S. A., Ahmad, I., Ashraf, M., & Saleem, M. H. (2021). Structural and functional determinants of physiological pliability in kyllinga brevifolia rottb. for survival in hyper-saline saltmarshes. *Water, Air, & Soil Pollution, 232*(10), 424.
- 25. NASIR, H., AHMED, I., NADIR, I., HAIDER, Z., & MEHMOOD, R. (n.d.). *A NEXUS BETWEEN FOREST RESTORATION PROGRAMME AND CLIMATE CHANGE*.
- 26. Niazi, A. R., & Ghafoor, A. (2023). Domestication of a magic therapeutical wine glass fungus

- (Podoscypha petalodes) from Pakistan. *Heliyon*, 9(6)
- 27. Rasib, K. (2021). Termite Occurrence And Damage Assessment In Urban Trees From Different Parks Of Lahore, Punjab, Pakistan.
- 28. Sadia, S., Waheed, M., Firdous, S., Arshad, F., Fonge, B. A., & Al-Andal, A. (2024). Ecological analysis of plant community structure and soil effects in subtropical forest ecosystem. *BMC Plant Biology*, 24(1), 1275.
- 29. Sharif, A., Shah, N. A., Rauf, A., Hadayat, N., Gul, A., Nawaz, G., Sakhi, S., Iqbal, M., Khan, M. R., & Shah, A. A. (2022a). Ethnomedicinal uses of plants for various diseases in the remote areas of Changa Manga Forest, Pakistan. *Brazilian Journal of Biology*, 84, e255916.
- 30. Sharif, A., Shah, N. A., Rauf, A., Hadayat, N., Gul, A., Nawaz, G., Sakhi, S., Iqbal, M., Khan, M. R., & Shah, A. A. (2022b). Usos etnomedicinais de plantas para várias doenças nas áreas remotas da Floresta Changa Manga, Paquistão. *Brazilian Journal of Biology*, 84, e255916.
- 31. Sial, M. A. (2024). Diversity, richness, and evenness of birds in Rana Resort Forest, District Kasur, Punjab, Pakistan. *Environmental Monitoring and Assessment, 196*(5), 460.
- 32. Siddique, M., Bokhari, S. S., Yasmeen, R., Aslam, I., & Safi, M. W. A. (2023). Biodiversity of Bajwat Wetland and Wildlife Sanctuary, Sialkot, Pakistan. *Scientific Reports in Life Sciences*, 4(4), 25–41.
- 33. Umar, A., Ahmed, S., & Alhomaidi, E. (2023). Ganoderma gibbosum newly recorded from Pakistan. *Mycotaxon*, 137(4), 841–851.
- 34. ur Rahman, A., Gürbüz, E., Ekercin, S., & Khan, S. M. (2022). Spatial dynamics of forest cover and land use changes in the western himalayas of Pakistan. *Vegetation Index and Dynamics*, 193.
- 35. Waheed, M., Arshad, F., Muhammad, M., Hashem, A., Alnafissa, M., Abd-Allah, E. F., & Sapayev, V. (2025). Food security and economic resilience of wild snake gourd (Trichosanthes cucumerina subsp. Cucumerina) under different host trees in subtropical managed forests. Agroforestry Systems, 99(5), 97.
- 36. Waheed, M., Haq, S. M., Arshad, F., Bussmann, R. W., Hashem, A., & Abd_Allah, E. F. (2024). Plant distribution, ecological traits and diversity patterns of vegetation in subtropical managed forests as guidelines for forest management policy. Frontiers in Forests and Global Change, 7, 1406075.
- 37. Waheed, M., Haq, S. M., Arshad, F., & Richardson, D. M. (2025). Invasion by the non-native tree Vachellia farnesiana alters the understory composition of plants and soil properties in a managed forest in the subtropical region of Pakistan. *Plant Ecology*, 226(4), 321–

335.

- 38. Waheed, M., Haq, S. M., Fatima, K., Arshad, F., Bussmann, R. W., Masood, F. R., Alataway, A., Z. Dewidar, A., F. Almutairi, K., & Elansary, H. O. (2022). Ecological distribution patterns and indicator species analysis of climber plants in changa manga forest plantation. *Diversity*, 14(11), 988.
- 39. Yasmeen, R., & Asif, L. (2022). Heavy metal exposure and behavioral assessment of vultures in a captive environment. *Environmental Science and Pollution Research*, 29(45), 68096–68102.
- 40. Zia, M. B., Farooq, A., Din, H. U., Khan, B. U., & Din, S. U. (2022). Revolution of timber based industry's landscape through paulownia plantations. *Pakistan Journal of Forestry*, 72(2), 76–83.